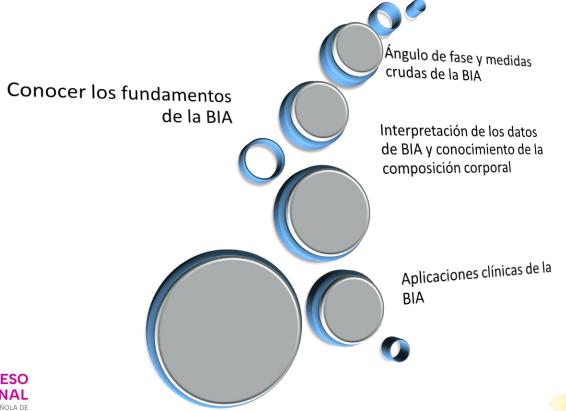


Sapere Aude

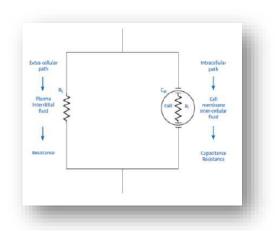
Reflexión ante nuevos retos

Nuevos retos en la valoración del estado nutricional

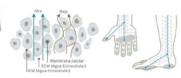

Análisis de la Bioimpedancia y ángulo de fase

Natividad Lago Rivero

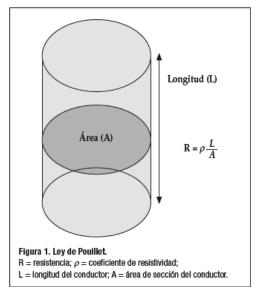
Complejo Hospitalario Universitario de Vigo FEA Farmacia Hospitalaria


Agua corporal representan un 50-70% del cuerpo humano agua

La **Bioimpedancia** es hacer pasar una serie de corrientes (alternas) indetectables e inocuas por el cuerpo humano y medir la resistencia que oponen los distintos tejidos al paso de estas corriente

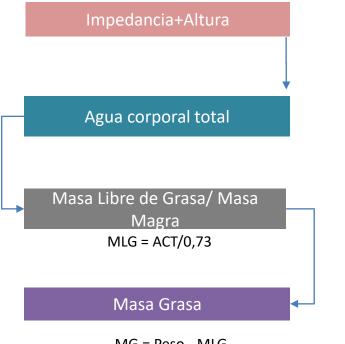


EL CUERPO PUEDE SER CONSIDERADO COMO UN CIRCUITO ELÉCTRICO


MEDICIÓN	MULTIFRECUENCIA	TETRAPOLAR
Diferentes	AIC y AEC	Reproducibilidad
ongitudes y áreas		

Resistencia (R)

Reactancia (Xc)


Mide la resistencia de los condensadores (membranas celulares) al paso de la corriente

Bioimpedancia (Z)

$$Z = \sqrt{R^2 + Xc^2}$$

Agua corporal total (ACT) 3:2

Masa libre de grasa (MLG)

Masa Grasa (MG)

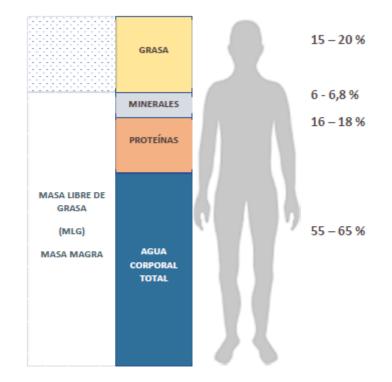
sc)

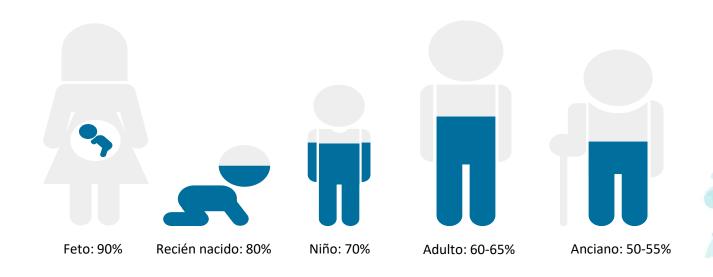
MG = Peso - MLG

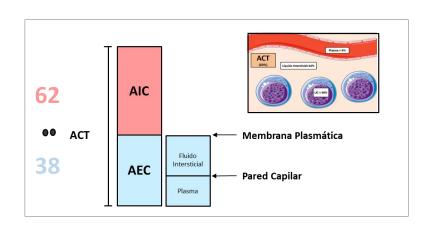
Con la ayuda de la fisiología, la proporción de **minerales** y **proteínas** puede ser estimada y confirmada a través de la técnica de referencia.

La **impedancia bioeléctrica** (BIA), es el método instrumental más popular y extendido para el estudio de la **composición corporal**

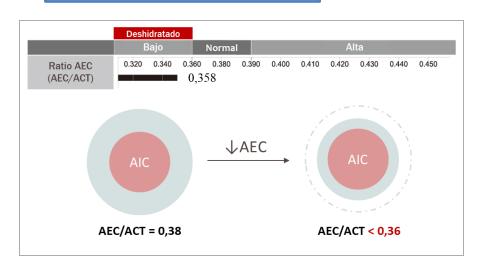
La utilidad de los valores eléctricos obtenidos por BIA está generando cada vez crecientes expectativas por su relación directa con la salud de las células y por lo tanto, con el estado de hidratación, nutrición e incluso la inflamación


- Ayuno ligero
- Evitar menstruación
- Orinar antes
- No joyas o metal
- No apto con dispositivos eléctricos

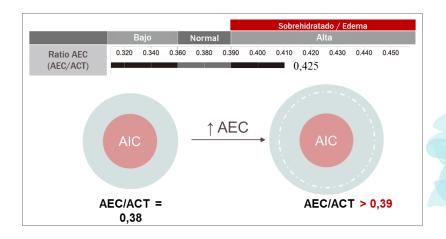




La ratio AEC/ACT: muestra el equilibrio del agua corporal

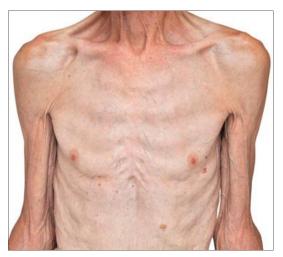


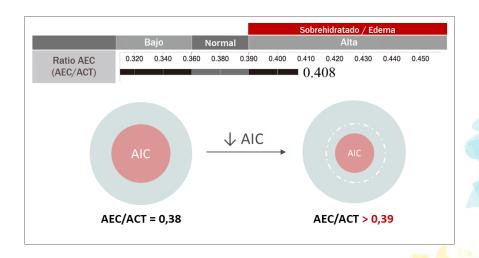
AEC/ACT < 0,36



Importante evaluar el grado de deshidratación: dolor de cabeza, mareos, calambres...

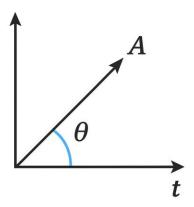
AEC/ACT > 0.39





Inflamación por lesión, post-cirugía, obesos...

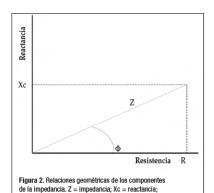
AEC/ACT > 0.39



Malnutrición, sarcopenia...

Phase angle

Ángulo de fase

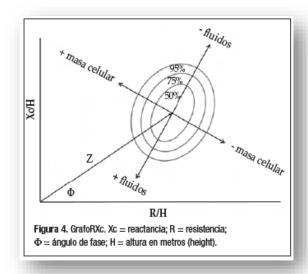


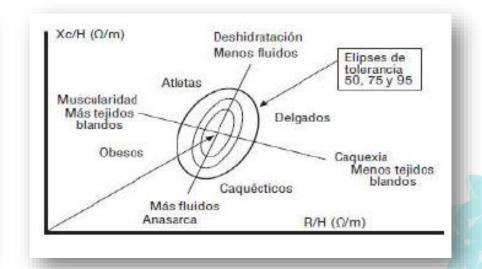
Ángulo de fase

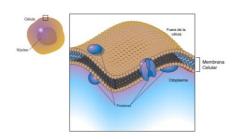
 $R = resistencia; \Phi = ángulo de fase.$

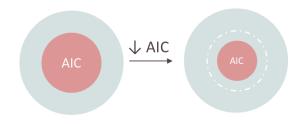
Ángulo de fase

TABLA I.


Valores de referencia en población sana normopeso. Adaptado de Barbosa Silva $et\ al.^{10}$ y Bosy-Westphal $et\ al.^{12}$


I	Población american	a ¹⁰	Población alemana ¹²					
Edad	Varones	Mujeres	Edad	Varones	Mujeres			
18-19	7.90±0.47	7.04±0.85	18-19	6,82 ± 0,77	5,93 ± 0,69			
20-29	8,02 ± 0,75	6,98 ± 0,92	20-29	6,89 ± 0,72	5,98 ± 0,68			
30-39	8,01 ± 0,85	6,87 ± 0,84	30-39	6,66 ± 0,7	6,03 ± 0,67			
40-49	$7,76 \pm 0,85$	6,91 ± 0,85	40-49	6,46 ± 0,7	5,96 ± 0,68			
50-59	7,31 ± 0,89	6,55 ± 0,87	50-59	6,24 ± 0,66	5,73 ± 0,68			
60-69	6,96 ± 1,10	5,97 ± 0,83	60-69	5,77 ± 0,82	5,51 ± 0,78			
≥70	6,19 ± 0,97	5,64 ± 1,02	≥70	5,11 ± 0,86	5,12 ± 0,84			


Bioimpedancia vectorial



Parámetros de In Tasa metabólica basal	vestigación 1328 kcal (1186~1367)
Area de Grasa Visceral	33,1 cm ²
Masa celular corporal	29,0 kg (25,2~30,8)
Circunferencia muscular del brazo	22,7 cm
ACT/MLG	72,9 %
IMME	7,0 kg/m²

CONGRESO NACIONAL SOCIEDAD ESPAÑOLA DE FARMACIA HOSPITALARIA MÁLAGA 15-17 OCT 25

Membrana celular dañada

(insuficiencia cardíaca, diabetes, cáncer, linfedema, desnutrición...)

- MCC = Proteínas + AIC → Estado nutricional
- IMMEA = BD+BI+PD+PI → Ayuda a valorar la sarcopenia Altura2

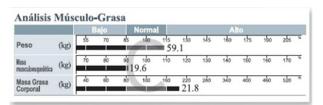
Análisis masa magra


		=	Bajo		Norma			Alto				Relación de AEC
Brazo Derecho	(kg) (%)	40	60	80	100 1,82 91,7	120	140	160	180	200	%	0,376
Brazo Izquierdo	(kg) (%)	40	60	80	100 1,83 91,9	120	140	160	180	200	%	0,377
Tronco	(kg) (%)	70	80	90	17,4 17,8 = 95,8	110	120	130	140	150	%	0,376
Pierna Derecha	(kg) (%)	70	80	90	100	110	7,37 117	130	140	150	%	0,370
Pierna Izquierda	(kg) (%)	70	80	90	100	110	120 7,	130 71 122.4	140	150	%	0,378

Muestra cuanta Masa Magra está contenida en cada segmento; no cuanto "músculo" hay en cada segmento, por tanto, se necesita considerar el **ratio AEC** conjuntamente.

Análisis músculo-grasa

85% Masa muscular 160% Masa grasa 100% Masa muscular 100% Masa grasa


Análisis Músculo-Grasa

		В	ajo	N N	lorm	al	Alto						
Peso	(kg)	55	70	85	100	115	130	145	160	175	190	205	%
					= 54	1,5							
Masa	(kg)	70	80	90	100	110	120	130	140	150	160	170	%
musculoesquelética	(5/					24,4							
Masa Grasa	(kg)	40	60	80	100	160	220	280	340	400	460	520	%
Corporal	(Ng)			10,1									

Análisis músculo-grasa

			Bajo Normal Alto										
Peso	(kg)	55	70	85	100	= 66.	130	145	160	175	190	205	%
Masa musculoesquelética	(kg)	70	80	90	100	=1i0 26.	8	130	140	150	160	170	%
Masa Grasa Corporal	(kg)	40	60	80	100	160 18.	220	280	340	400	460	520	%

			ajo		Norma	1							
Peso	(kg)	55	70	85	100	9.1	130	145	160	175	190	205	N
Masa musculoesquelética	(kg)	70	80	90	100	110 29	.6	130	140	150	160	170	*
Masa Grasa Corporal	(kg)	40	60	80	100	160 11.8	220	260	340	400	460	520	54

Valor IMC	Rango						
< 16	Delgadez severa						
16,00 - 16,99	Delgadez moderada						
17,00 – 18,49	Delgadez aceptable						
18,5 - 24,99	Peso normal						
25,00 – 34,99	Sobrepeso						
30,00 - 34,99	Obesidad tipo I						
35,00 - 40,00	Obesidad tipo II						
40,00 – 49,99	Obesidad tipo III (obesidad mórbida)						
> 50	Obesidad tipo IV o extrema						



IMC vs PGC

Obeso común

Obeso severo

- Sobrepeso debido a una gran musculatura

	Е	Bajo		Norma	ıl 📗			Al	to				
IMC Indice de Masa Corporal (kg/m²)	10,0	15,0	18,5	22,0	25,0	^{30,0} 26,7	35,0	40,0	45,0	50,0	55,0	\longrightarrow	Complexión corpulenta
Porcentaje de Grasa Corporal (%)	0,0	5,0	10,0	15,0 12,6	20,0	25,0	30,0	35,0	40,0	45,0	50,0	\longrightarrow	Grasa corporal normal

Evaluación de la composición corporal

- Estimación masa grasa, masa magra y agua corporal
- Cambios en el estado nutricional

Valoración del estado de hidratación

 Estimar AIC, AEC; monitorizar edemas, deshidratación o sobrecarga hídrica

Monitorización en terapia con diálisis

• Determina el «peso seco» y orienta la ultrafiltración

Seguimiento en oncología

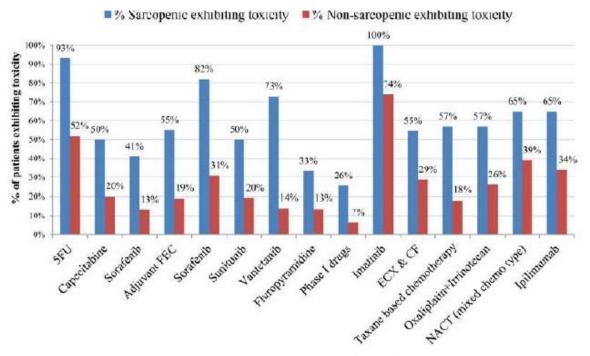
 Detección precoz de la sarcopenia y pérdida de masa celular activa durante el tratamiento

Enfermedades crónicas y geriatría

• Permite valorar el riego de fragilidad y sarcopenia

Rehabilitación y medicina deportiva

 Cuantifica la masa muscular y el balance hídrico para optimizar la recuperación o rendimiento físico





CONGRESO Daly LE, Prado CM, Ryan AM. A window beneath the skin: how computed tomography assessment of body composition can assist in the identification of hidden wasting conditions in oncology that profoundly impact outcomes. Proc Nutr Soc. 2018 May;77(2):135-151. doi: 10.1017/S0029665118000046. PMID: 29745361.

Nutritional Status and Its Impact on Treatment Tolerance in Non-Small-Cell Lung Cancer Patients Receiving Osimertinib

Claudia Barca-Díez ^{1,2,*}, Regina Palmeiro-Carballa ³, Susana Castro-Luaces ^{1,4}, Maria Susana Fortes-González ^{1,5}, Silvia Vazquez-Blanco ⁵, Noemi Martínez-López-De-Castro ^{1,4} and Natividad Lago-Rivero ^{1,4}

b Cork Cancer Research Centre, University College Cork, Cork, Ireland

Derek G. Power M.D. d, Louise E. Daly Ph.D., B.Sc. al

a School of Food and Nutritional Sciences, College of Science, Engineering and Food Science, University College Cork, Ireland

^c Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
^d Department of Medical Oncology, Mercy and Cork University Hospitals, Cork, Ireland

Gracias

Natividad.lago.rivero@sergas.es